

Bridging Gaps in Technology

Sanket Digital Signal Conditioner

USER'S MANUAL

Read the user's manual carefully before starting to use the unit or software. Producer reserves the right to implement changes without prior notice.

Seetharam Mechatronics Pvt. Ltd

Office: #3, 8th Street, Vaishnavi Nagar, Chennai-600 109, India. Web: www.seetharam.in Email: ram@seetharam.in Sanket Digital

Index

Section	Title	Pages
1	Safety/Proper Usage	03
2	Warning	04
3	Product Description	05
4	Pin Configuration	06
5	Screen Setting	07
6	Icon Description	08
7	Main Menu	09
8	Input Setting	10
9	Output Setting	12
10	Engineering Setting	19
11	Calibration Procedure	20
12	Calibration Settings	22

1. Safety / Proper Usage

- Don't use sharp edge tools/equipment on touch screen
- In order to minimize fire or electric shock hazard, the unit must be protected against atmospheric precipitation and excessive humidity.
- Do not use the unit in areas threatened with excessive shocks, vibrations, dust, humidity, corrosive gasses and oils.
- Do not use the unit in areas where there is risk of explosions.
- Do not use the unit in areas with significant temperature variations, exposure to condensation or ice.
- Do not use the unit in areas exposed to direct sunlight.
- Make sure that the ambient temperature (e.g. inside the control box) does not exceed the recommended values. In such cases forced cooling of the unit must be considered (e.g. by using a ventilator).
- Do not attempt to disassemble, repair or modify the unit yourself. The unit has no user serviceable parts. Defective units must be disconnected and submitted for repairs at an authorized service centre
- In an environment with a high amount of moisture or humidity, create a drip loop on the cable to prevent any water from flowing into the sensor.

\land 2. Warning

The indicator must not be modified from the design or safety engineering point of view except with our express agreement. Any modification shall exclude all liability on our part for any damage resulting there from.

3. Product Description

4. Pin Configuration

5. Screen Setting

Home Screen

S.No	Parameters	Description
1	Display Reading	The current display of sensor reading. See
		Section for details.
2	Menu	Navigate to
		Input
		Output
		Engineering Setting
		Calibration
3	Peak	Displays only max. value when enabled
		Peak Enabled - Button Red Color
		Peak Disabled - Button Green Color
4	Zero	When enabled the current value is zeroed
5	Units	Selected Unit Display
6	Alarm Channel	Displays the status of alarm channel
		Red - Disabled
		Green - Enabled

Note: kindly touch icon for navigation to following screen.

6. Icon Description

lcons	Description
	Home Button - Navigate to Home Screen
	Forward - Navigate to Next Screen
	Backward - Navigate to Previous Screen
	Backward - Navigate to Previous Screen
	Save Button - To Save the Settings

Numeric Screen

This screen will pop up for numerical data entry.

7. Main Menu

Main menu consists

- 1. Input setting
- 2. Output setting
- 3. Engineering setting
- 4. Calibration setting

8. Input Setting

Sensor Type Selection

Load Setting

Compression – unipolar Tension – Bi-polar

8. Input Setting

Excitation Voltage

Select the recommended excitation as specified in sensor datasheet.

Sensor Input

- Enter sensitivity of sensor as mentioned in datasheet.
- Enter full scale of sensor to be measured.
- Select the unit to be displayed of sensor (unit conversion not available)
- Select the appropriate decimal point.
- Save the setting.

12.1 Alarm Output Setting

Alarm output consists of four channels in which conditions can be set and trigger the relay output accordingly.

12.1.1 Channel Navigation Screen

12.1.2 Channel Setting Screen

12.1.3 Range Setting

Energize (or) De-energize relay between two set conditions

Range Level Setting			
Out	tput Logic	Ohigh Orow	
Lo	w Range	00	
Hig	gh Range	00	
	A -	Data Star	ad 🛄
Alarm Data Stored			

Output logic - select **HIGH** for energizing the relay between the set values. Till then the relay will be de -energized.

Select **LOW** for de - energizing the relay between the set values. Till then the relay will be energized.

Low range - Enter the low range value

High range - Enter the high range value

After entering data select save button upon which "Alarm data stored". Once saved, it will be navigated to alarm channel selection screen.

12.1.4 High Setting

Energize (or) De-energize relay output greater than the given value.

High Level Setting			
Out	tput Logic	Онтен С) LOW
Hig	gh Range	00	
	Alarm Data Stored 🛛 🖶		

Output logic - select **HIGH** for energizing the relay after the values. Till then the relay will be de - energized.

Select **LOW** for de - energizing the relay after the values. Till then the relay will be energized.

High range - Enter the high range value

After entering data select save button upon which "**Alarm data stored**". Once saved, it will be navigated to alarm channel selection screen.

12.1.5 Low Setting

Energize (or) De-energize relay output lesser than the given value.

Low Level Setting			
Out	tput Logic	Онтен С	LOW
Lo	w Range	00	
	Alarm Data Stored 🔡		

Output logic - select **HIGH** for energizing the relay below the values. Till then the relay will be de - energized.

Select $\ensuremath{\mathsf{LOW}}$ for de – energizing the relay below the values. Till then the relay will be energized.

Low range - Enter the low range value

After entering data select save button upon which "Alarm data stored". Once saved, it will be navigated to alarm channel selection screen.

12.2 Signal Output

Select type of analog output required for your process/application.

12.2.1 Voltage Setting

The voltage will be scaled between minimum process value and maximum process value

Output mode - Select the required output voltage for your process.

Min PV- Enter minimum process value

Max PV - Enter maximum process value

After entering data select save button upon which "**Output data stored**". Once saved, it will be navigated to output setting screen.

12.2.2 Current Setting

The current will be scaled between minimum process value and maximum process value

Output mode - Select the required current output for your process.

Min PV- Enter minimum process value

Max PV - Enter maximum process value

After entering data select save button upon which "**Output data stored**". Once saved, it will be navigated to output setting screen.

After entering data select save button upon which "**Output data stored**". Once saved, it will be navigated to output setting screen.

12.3 Communication

Enter device ID

Select type of communication

Select baud rate based on the device connected to koal touch.

After entering data select save button upon which "Com data stored".

10. Engineering Settings

Enter multiplication factor to be multiplied with calibrated value

Input sampling/sec - Select options for required samples to be read by the indicator.

Display update/sec - Select options for how many times the display has to be updated.

After entering data select save button upon which "Eng data stored".

11. Calibration Procedure

11.1. Actual load calibration

1. Select the master load cell capacity higher than the load cell to be calibrated

2. Connect both the load cells to their respective signal conditioner

3. Place the master in the calibration fixture

4. Without any inclination, place the slave above the master with proper fixture.

5. Check both master and slave conditioner at no load condition, if it shows any value make it zero by press zero button.

For example:

Max capacity of load cell = 100 kg Max output = 10 volt 80% of full load = 80 kg Corresponding output = 8 volt

6. So apply 80 kg in both the load cells and compare the output values.

7. Enter cal value and press cal set to equalize with master value.

8. Repeat the steps 5 to 7 for two or three times, If there are any deviation with master output.

9. Compare the output for different loads and the difference in outputs are its error.

11. Calibration Procedure

11.2. Sensitivity Based Calibration

Enter sensitivity value in input settings as per in calibration certificate else request manufacturer for exact sensitivity for rated load.

Press Save 🕞

12. Calibration Settings

Calibration setting

Physically Load sensor with known load and enter the known value.

After entering data select save button upon which "calibration data stores".