

Static Torque Dual Flange STDF

USER'S MANUAL

Read the user's manual carefully before starting to use the unit or software. Producer reserves the right to implement changes without prior notice.

Seetharam Mechatronics Pvt. Ltd

Office: #3, 8th Street, Vaishnavi Nagar, Chennai-600 109, India. Web: www.seetharam.in Email: ram@seetharam.in

STDF Torque

Index

Section	Title	Pages
01.	Technical Specification	03
02.	Electrical Connection	04
03.	Product Description	06
04.	Procedure	07
05.	Safety	08
06.	Precautions	10
07.	Warning	11
08.	Do's	12
09.	Don't's	13
10.	EMC Protection	14

1. Technical Specification

Model	STDF
Rated capacity (R.C.)	10Nm ~ 1000Nm
Rated output (R.O.)	1mV/V ±1%
Non-linearity	0.3% (0.1kgf-m under 0.5% R.O.)
Hysteresis	0.3% (0.1kgf-m under 0.5% R.O.)
Repeatability	0.02% of R.O.
Terminal resistance, input	350Ω±1%
Terminal resistance, output	350Ω±1%
Insulation resistance	2000ΜΩ
Temp. effect on zero balance	±0.1% R.O. /10°C
Temp. effect on rated output	±0.1% Load /10°C
Excitation recommended	10V DC
Safe overload	120% R.C.
Cable length	Ø5.5 4core cable, 3m

02. Electrical Connection

The STDF output signal is mV/V based on strain gauges. An amplifier is required for condition the signal. All DC amplifiers and carrierfrequency amplifiers designed for strain gauge measurement systems can be used.

Connection to Amplifier

5 Pin	Function
Pin 1	Signal Positive ^(Sig + Vie)
Pin 2	Signal Negative ^(Sig - Yie)
Pin 3	Excitation Positive (Exc + Ve)
Pin 4	Excitation Negative
Pin 5	Shield -

02. Electrical Connection

Free cable ends

Wire	Function
Green	Signal Positive ^(Sig +Ve)
Yellow	Signal Negative ^(Sig-Ve)
Brown	Excitation Positive (Exc + Ve)
White	Excitation Negative (Exc - Ve)
Aluminium Color	Shield C

The output signal is positive for the above connection. If negative output is required, interchange the polarity of output signal.

03. Product Description

04. Procedure

Mount on flat and clean surface required.

Torque must be in center in-line of axis whether its clockwise (or) anticlockwise direction

04. Procedure

Mount the sensor by tighten screws in a 12 o'clock, 60'clock, 9 o'clock, and 3 o'clock in a cross like manner (the same technique that is used when bolting your tires).

Screw Size	Torque (NM)
1	

04. Procedure

When installing the sensor, connect it to an instrument and monitor the output to prevent possible overload. Use koal touch indicator If not sure about force to be measured. Use feedback control to prevent sensor from overloaded. If not sure about torque to be measured. Use feedback control to prevent sensor from overloaded.

In an environment with a high amount of moisture or humidity, create a drip loop on the cable to prevent any water from flowing into the sensor.

